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Abstract

Biaxial strength testing of brittle materials is claimed to have some benefits compared to uniaxial testing, e.g. the much simpler

specimen preparation, the avoiding of tensile loaded edges, the similarity of the stress state to those from typical loading (e.g. during a
thermal shock loading) and the fact, that biaxial stress states are more revealing of defects than uniaxial stress states. The experience
of the past showed, that biaxial strength testing has its own problems, to avoid these led to the development of several variants. One of
these variants, the ball on three balls test, seems to be extremely simple: a disc is supported by three balls and then axially loaded from

the opposite side via a fourth ball. In this system small deviations from the requested geometry, especially some out of flatness of the
disc, are mentioned to be tolerable, but the threefold bending symmetry makes an exact analytical assessment of the stress state in the
loaded disc extremely difficult. A numerical approach has yet not been performed. In this paper a FE analysis of the stress state in a

ball on three balls tested disc is performed. The stress field scales with the maximum principle stress, which occurs in the centre of
the tensile surface. For this stress an analytical approximation (which has been fitted to the numerical results) is given, which
accounts for the influence of all relevant geometrical and material parameters. The investigated range of parameters considers the

values typical for testing of brittle materials. # 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Biaxial strength testing of brittle materials has been
used for many years, and there exists a wide variety of test
assemblies described in the literature. Typically, there are
several advantages claimed for biaxial flexural testing of
discs compared with uni-axial testing (in tension or in
bending), including ease of test piece preparation, use
for thin sheet materials and testing of a large surface
area free from edge finishing defects.1 Furthermore the
biaxial stress distribution is more searching for defects
than a uni-axial distribution.2 Many commercially pro-
duced components are biaxially loaded and for them
biaxial testing is the more relevant test condition.
The most common biaxial test assemblies are listed in
Table 1, which are generally applied for ‘‘thin’’ discs.
Often used is an axisymmetrical testing assembly where
the disc is supported by a ring and loaded from the oppo-
site side by another, smaller concentric ring (ring-on-

ring test).3,4 In the area underneath the smaller ring
exists an equi biaxial tensile stress state where initialisa-
tion of fracture is expected. Alternatively the ball-on-ring
test5 and the ball on ring of balls test6 are also often used.
All three methods show the disadvantage, that more or
less perfect flat discs are required,2 which might make
polishing of the specimens necessary. Any deviations
from flatness lead to additional stresses during the load-
ing, so that strength results become hardly interpretable.
Therefore, the punch on three balls test has been devel-
oped, which tolerates a small out of flatness of the disc,3

since also non planar discs faces are supported stably by
three points. It is standardised in ATSM F 394-78.7 In
that standard and the related literature3 only small var-
iations of the geometry are considered which strictly
limits the applicability of this test assembly. Variants of
these tests are the ring of balls on ring of balls test, the
full or part pressurisation of ring supported disc test,5 the
punch on ring test,5 the ball with flat on ring test5 and the
ball with a flat on three balls tests.9

Another familiar test geometry and topic of this article,
the ball on three balls test,6 is even more tolerant to
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some out of flatness of the disc then all other test
assemblies mentioned above. In general sintered discs
with no special surface finishing can be tested, allowing
a quick testing of samples, e.g. during production for
quality control. In this test the lower face of a disc spe-
cimen is supported on three balls equidistant from its
centre. The upper face is centrally loaded with a fourth
ball. The fracture load is measured. The strength is
defined to be the maximum principal tensile stress in the
disc, which occurs on the disc surface opposite the
centred loading ball. Of course the stress field in the disc
depends on the applied load, on the geometric set-up of
the test, namely the thickness and the diameter of the
disc and the size and the position of the balls, and also
on the elastic properties of ball and disc materials. The
proper evaluation of the ball on three balls test needs
the exact knowledge of this relationship between applied
load and the maximum tensile stress but up to now, a
systematic study is still missing.
Some analytical approximations for the stress distribu-
tion in the disc exists8,10�12 which all are insufficient for
two main reasons. Firstly all of them are based on the
cylindrical symmetrical thin-plate-theory that predicts an
infinite tensile stress amplitude (i.e. a logarithmic singu-
larity) opposite to the load transfer point, modelled as a
point force. Therefore, the approximations fail to
describe the tensile stresses opposite the loading area in
the centre of the disc. Secondly the approximations
depend on the contact radius between the loading ball
and the disc and as will be shown later, none of the
given solutions is appropriate. Table 2 shows several of
these approximations, which predict very different con-
tact radii leading to different results for the tensile stress
distribution around the centre of the disc.
In this paper a finite element analysis of the stress fields
in ball on three ball-loaded discs is performed. An analytic
expression for the relation between load and maximum
stress in dependence of the testing geometry for the prac-
tical evaluation of this tests will be derived. First testing
results on a commercial Al2O3 ceramic are presented.

2. Analytical solutions for the ball on three balls test

Different approaches have been made for the analy-
tical calculation of the stress distribution in centrally
loaded biaxial disc tests. They are all based on the lin-
ear-elastic axisymmetric thin-plate theory. Basic work
was done by Bassali11 and later in a more specified way
by Kirstein and Woolley.8 According to Kirstein and
Woolley the maximum tensile stress smax in the centre
of the disc face is approximately independent from the
number of support points and can be described by:

�max ¼ �
3�F

4���t2
� � lð Þ; ð1Þ

where

� ¼ ð1þ �Þ�ln
b

R

� �2
þ
ð1� �Þ

2
�
b

R

� �2
; ð2Þ
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l ¼ ð1þ �Þ� 1þ ln
Ra
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with F, applied load;
t, sample thickness;
�, Poisson’s ratio of the disc material;

Table 1

Typical testing assemblies for bi-axial strength test of discs with (a) axis-symmetric and (b) non axis-symmetric stress distributions

Reference

(a) Axis-symmetric stress distribution

Ring on ring ISO 6474,13 Soltesz et al.,3Fessler and Fricker4

Ball on ring Matthewson and Field5

Punch on ring Matthewson and Field5

Ball with flat on ring Matthewson and Field5

Full or part pressurisation of ring supported disc Matthewson and Field5

(b) Non axis-symmetric stress distribution

Punch on three balls ASTM F394,7 Kirstein and Woolley8

Ball on three balls Godfrey10

Ball on ring of balls Godfrey and John6

Ring of balls on ring of balls Godfrey and John6

Ball with flat on three balls Byrne and Morrell9

Table 2

Approximations for the contact radius b of the central loading ball

b

Westergaard14 t for �>1.724t

ð1:6�2 þ t2Þ1=2 � 0:675t for 04�41.724t

Godfrey10 0:721� F�2Rb �
1

E0

� �1
3

for �50

Shetty et al.15 t/3 for �50
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b, radius of the loaded area (e.g. contact radius
of the loading ball or loading pinch on the disc,
assumed to be under constant stress value);

R, radius of the disc;
Ra, support radius.

The parameter l accounts for the stiffening effect of
an edge overhang of the tested disc over the support.
Eq. (1) predicts obviously infinite tensile stresses in the
centre of the disc when the contact radius b approaches
zero: lim

b!0
�max ¼ �1: Therefore, this theory cannot be

used to calculate stresses underneath the loading point.
Kirstein and Woolley, and later Vitman and Pukh12

extended this solution to a disc loaded with a constant
pressure within the centred circular area with radius b.
Their solution for the stress field (i.e. the radial and tan-
gential stress components �rr and �’’; defined in a polar
coordinate system) on the tensile surface of the disc is
claimed to be applicable outside the loading area (r>b):

�rrðrÞ ¼
3�F�ð1þ �Þ

4���t2
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The variable r is the distance from the centre at the
tensile loaded disc face (i.e. the radius in a polar coor-
dinate system). The stress distribution for r>b depends
strongly on the loading area radius b and the problem of
diverging stresses for ‘‘point-like’’ forces still remains.
To apply this solution to a ball loaded disc the con-
tact radius b has to be known. Various approximations
have been offered to determine this parameter. With the
following abbreviations

� ¼
3�F�Rb

4�E0

� �1=3
ð6Þ

and

1

E0
¼
1� �2b
� �
Eb

þ
1� �2
� �

E
; ð7Þ

and with

Rb, Radius of ball;
�b, Poisson’s ratio for ball material;
Eb, Young’s modulus for ball material;
E, Young’s modulus for disc material;

the most common approximations for the contact
radius b, found in literature, are listed in Table 2.
These solutions have to be extended for the tensile
loaded area underneath the loading area. For the ball
on ring of balls geometry Shetty et al.15 developed an
equation to approximate the maximum tensile stress
component in the disc (that is at the point r=0 on the
tensile stressed surface of the disc) starting from quite
similar assumptions as Kirstein and Woolley8 and Vit-
man and Pukh:12

�max ¼
3�F�ð1þ �Þ

4���t2


 1þ 2�ln
Ra

b
þ
ð1� �Þ

ð1þ �Þ
� 1�

b2
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� �
�
R2a
R2

� �
: ð8Þ

Kirstein and Woolley8 claimed that this solution
should approximately be independent from the number
of supporting balls, so it can be applied to axi- but also
to non-strictly axi-symmetric testing configurations.
Another approximation is given by Timoshenko.16 He
modelled a plate without any overhang (i.e. R ¼ Ra) and
derives a solution for the maximum tensile stress in the
disc, which, in addition to other parameters, depends on
the ratio of the contact radius to disc thickness: b/t. He
assumed that for very small contact radii, the maximum
tensile stress is independent on the ratio b/t, getting:

�max ¼
F

t2
� 1þ �ð Þ 0:485ln

Ra

t

� �
þ 0:52

� �
þ 0:48

	 

: ð9Þ

The constant numbers were obtained by fitting results
of finite-element calculations. All these approximations
give quite different solutions for the maximum tensile
stress component and the tensile stress distribution in
ball on three balls loaded discs. It is obvious that a pre-
cise analytical approximation is hard to determine, since
this problem has to be solved in three dimensions.
Therefore a finite element analysis has been performed
to determine the tensile stress field in the loaded disc
and the results are presented in the next chapter.

3. Numerical determination of the stress field

In a first approach a (non-linear) contact mechanical
analysis was performed by using the commercial finite
element (FE) software ANSYS, Version 5.6. The disc
and the supporting balls were modelled using brick ele-
ments (8 or 20 nodes per element) and the contacts
between the balls and the disc were modelled by surface-
to-surface contact elements. It is assumed that friction
effects only slightly change the stress distribution and is
therefore not taken into account in this paper but will
be investigated in the following publication. Due to the

A. Börger et al. / Journal of the European Ceramic Society 22 (2002) 1425–1436 1427



mirror symmetry of the system only one sixth of the test-
ing geometry is modelled (Fig. 1). In order to describe the
behaviour of the balls in the test assembly,

. the centre of the support balls (lower balls) are
fixed in their position,

. their radii are defined to be equal to that of the
loading ball and

. they are assumed to be made of the same material,

. the centre of the loading ball (upper ball) is
allowed to move only perpendicular to the disc
surface (y-direction) to apply the load on the disc,

. in the test assembly described, the support radius Ra
is given by the radius of the support balls Rb in that
way that the three support balls touch each other,
forming an equally sided triangle of support points:

Ra ¼
2

ffiffiffi
3

p

3
Rb: ð10Þ

Since most ceramics are well described as isotropic,
brittle materials, the materials are modelled as isotropic,
homogeneous and linear-elastic continua defined by
Young’s modulus E and Poisson’s ratio �:
In Fig. 2a and b an example stress distribution is
shown. The geometric and materials parameters listed in
the description of the Fig. 2a and b define the standard
model for this article, referred to in the following chap-
ters if any differing parameter values are not mentioned.
These colorcoded overview pictures of the first principal
stress distribution (i.e. the largest stress component)
show some main features of this test:

. the maximum tensile stress occurs in the centre of
the tensile surface of the disc (red area),

. the stress field shows a threefold symmetry, caused
by the three supporting balls and

. at the support areas compressive stresses occur
(grey shaded areas).

Fig. 1. FE-model of the ball on three balls test assembly: the midpoint

of the support ball is fixed and the midpoint of the centred loading ball

is only allowed to move vertically; the radii of the supporting balls and

of the loading ball are chosen to be equal. Assuming contact between

the support balls the relation Ra ¼ 2
ffiffiffi
3

p
Rb=3 holds. Nodes in the sym-

metry planes (i.e. 0 and 60�) are fixed to them. Special points of interest

(so-called key-points K1 to K4) for the following analysis are indicated

by arrows.

Fig. 2. Example of a stress field in a disc for a typical loading condition in a ball on three balls-test, half model. Plotted is the percentage of the

maximum tensile stress component in the disc (0–100%). Chosen parameters for the standard model are: t=2 mm, R=10 mm (t/R=0.2), Rb=7.535

mm (Ra/R=0.87), E=100 GPa, �=0.3, Eb=100 GPa, and �b=0.3. (a) Positive (tensile) first principal stresses; diagonal view of the disc and the

loading and support balls. (b) Positive (tensile) first principal stresses, bottom view of the tensile stress surface of the disc. The white areas, indicated

with an arrow (I), stand for compressive stresses, as they arise in the contact area between support balls and the disc.
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More detailed information about the tensorial stress
field is shown Fig. 3a–c, where results of stress compo-
nents are plotted along selected paths in the planes of
symmetry. The stresses are normalised with the max-
imum tensile stress value in the centre �max and the
space coordinates with the path lengths. Along the 0�-
direction of the tensile surface between Point K1 and
K2 (Fig. 3a) the tangential stress components �’’ are
almost equal to the radial components �rr in a large
range along the radius of the disc and tend to an axi-
symmetric biaxial stress state at the midpoint. The axial
stress �zz components are zero in this region, since the
surface is free. In the contact area (at r/R=0.87)

between the support ball and the disc, compressive
stresses with comparable large magnitudes occur. As
known from the Hertzian contact problem1 also tan-
gential and radial tensile stresses exist around the con-
tact area. For supporting balls with small radii these
stresses could even be higher than the stresses in the
centre of the disc’s surface. Then fracture of the disc is
expected to start from the support area. Failure modes
of this kind should be avoided since they cannot be
interpreted within the scope and the results of this
paper. In the 60�-direction of the tensile surface between
point K1 and K3 (Fig. 3b) the tangential stress compo-
nents are higher than the radial stress components,
except at the centre where these stress components are
approaching each other again. The axial stress compo-
nents are zero along the whole path. In Fig. 3c the stress
components along the vertical axis of the disc between
K1 and K4 are shown. At this central path of symmetry
the radial and tangential stress components are equal
and build up an axis symmetric stress state. It can be
recognised, that the absolute value of the compressive
stress amplitudes underneath the upper loading ball is
several times higher than the amplitude of the tensile
stresses in the centre of the tensile surface. The magni-
tude of the compressive stress maximum can be reduced
by enlarging the loading ball. The compressive stress
maxima at the supporting balls on the opposite disc
plane are significantly smaller (using four identical balls
for loading and support), since there are three balls
splitting up the total load. But in general the occurrence
of comparable large compressive stresses makes this
type of test only valuable for materials with a much
higher compressive then tensile strength as it holds for
ceramic materials.
With this model a parametric study was carried out in
order to verify the quality of the analytical solutions. As in
all cases of bent plates (or beams) the maximum tensile
stress in the disc �max scales with the applied force F, and
with the inverse square of the thickness of the plate t:

�max ¼ f�
F

t2
: ð11Þ

Therefore, the factor f is dimensionless. In this equa-
tion also the effect of the Hertzian flattening of the balls
is taken into account. According to isotropic linear-
elastic material properties and the involved geometry
factors the stress field in the disc depends on eight
parameters (geometrical, material and loading para-
meters). In general these eight parameters are arguments
of the function f:

Fig. 3. Radial, tangential and axial normalised stress components. (a)

Along a path in the 0�-direction (K1–K2), (b) along the 60�-direction

of the tensile plane of the disc (K1–K3) and (c) along the axis of the

disc (K1–K4).

1 The formulation and solution of the Hertzian contact problem

can be found in many standard book of mechanics; for example.17
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. the force F,

. the support radius Ra [see Eq. (10)], the disc radius
R, and the disc thickness t,

. the elastic constants of the disc E and � (Young’s
modulus and Poisson’s ratio) and

. the corresponding elastic constants of the balls
(load, support) material Eb andvb.

With the investigated testing method it is intended to
measure the strength of brittle and hard materials. This
task limits the range of relevant material parameters to
stiff metallic and ceramic materials. In the present
investigation

. the Young’s moduli E and Eb are varied from 100
to 1000 GPa and

. the Poisson’s ratios � and �b are varied from 0.2 to
0.3.

3.1. Influence of the contact radius on the tensile stresses
in the disc

During the loading the central ball and the disc
deform so that a circular contact area of radius b builds
up under the loading ball (a smaller contact area builds
up over each of the three supporting balls). With
increasing load the contact area increases. Of course this
contact area depends on the applied force and is the
greater the softer the support and disc materials are.
This change in the loading geometry may also influence
the tensile stresses in the disc. Following the analytical
approximations for the maximum tensile stress (dis-
cussed in Section 2) a strong dependency of the tensile
stresses on the contact radius can be expected. This
relationship is investigated in the following.
For the example described in Fig. 2, (R=10 mm, t=2
mm, Rb=7.535 mm, �=�b=0.3) the contact radius b is
plotted versus the applied force in Fig. 4. Different
symbols refer to different combinations of the Young’s
moduli of the ball and disc materials (E, Eb). Generally
for a given combination of material properties the con-
tact radius increases nonlinearly with the applied force.
But the contact radius is also a function of the elastic
moduli: the deformation is larger for a combination of
low modulus ball and disc materials (case of E=
Eb=100 GPa, square symbols) and it is smaller for a
combination of high modulus materials (case of
E=Eb=400 GPa, circle symbols). It is interesting to
note, that it does almost not depend whether the disc or
the ball material is stiffer: the symbols for the case
E=100 GPa and Eb=400 GPa (cross symbols) coin-
cides with the inverse case of a combination E=400
GPa and Eb=100 GPa (star symbols).
The lines in Fig. 4 refer to the analytical expressions
listed in Table 2. The approximation of Godfrey,10 eval-
uated at E=Eb=100 GPa (solid line) almost coincides

with the numerical solutions. Actually all drawn data
points for various combinations of Young’s moduli can
be reproduced by the formula of Godfrey within a few
percents of deviation. The solutions of Westergaard14

(dashed line) or Shetty et al.15 (dotted line) drastically
overestimate the contact radius.
Additional calculations for support materials with
other Poisson’s ratios (�b was varied from 0.2 to 0.3)
result in such small differences to the plotted results (less
than 1%), that they can not be recognised in the dia-
gram. If the load transfer from the support in the disc is
not influenced by the change of �b, the stress field in the
disc can it be neither. Therefore, the influence of �b, on
the stress field in the disc is neglected in the further
investigations.
The insert in Fig. 4 presents FEM-calculation results
of the contact pressure distribution (under the loading
ball, i.e. in the top plane of the disc) in an invariant way.
By drawing the pressure in units of the maximum contact
pressure and the radius in units of the contact radius b,
a parabolic-type pressure distribution is obtained, which
is nearly the same for all relevant test situations. This
result shows clearly that the pressure is distributed and not
constant as assumed in the analytical approximations
discussed in Section 2.
Fig. 5 shows the dependency of the dimensionless
factor f [the highest tensile stress component �max in the
disc, divided by the scaling stress F/t2, compare Eq. (11)]
versus the applied force, F. The square symbol repre-
sents the FEM-results for the standard model (compare
Fig. 2), while the four other symbols correspond to
modified models. It can clearly be seen, that—in the
parameter range investigated—this factor f does not
depend on the applied force, it is constant for one set of
parameters. This result is not trivial since the contact
areas between ball and disc increase non-linearly with

Fig. 4. Contact radius b, as a function of the applied load F for dif-

ferent combinations of Young’s moduli of ball and disc. The other

parameters are the same as used in Fig. 2 (b was gained from the cal-

culated radius where the contact force on the disc applied by the ball

dropped to zero). Also shown are the results of some analytical

approximations for E=Eb=100 GPa.
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increasing force. Another source of force-dependence
and non-linearity, namely the geometric non-linearity, is
negligible, since the strains in stiff materials are ‘‘small’’
under the considered loading situations.
Finally the dependence of the tensile stress field is
examined for various combinations of Young’s moduli.
A normalized plot of the 1st principal stresses along the
path in 0 and 60� direction is shown in Fig. 6 for two
different Young’s moduli of the disc (symbols) as an
example. Actually all combinations of elastic constants
within the given parameter range lead to the same ten-
sile stress field opposite to the loading ball within a
deviation smaller than 1% (excepted is the direct con-
tact area between support balls and disc). Therefore, the
factor f in Eq. (11) can be assumed to be independent
from the applied force, the elastic moduli of the balls
material (i.e. Eb, �b) and the Young’s modulus of the
disc material E. This reduces the number of independent
variables influencing the tensile stress field in the disc to
three (the ratio Ra/R, the ratio t/R and the Poisson’s
ratio of the disc �).
Also included in Fig. 6 are results of calculations
made for a point-loaded disc. These results coincide
with the results for the ball-loaded discs. The calcula-
tions were made for typical testing geometries (t/
R>0.05). In this parameter range the loaded area is far
enough from the tensile side of the disc that it makes no
difference for the tensile stresses whether the loading
force is applied in a very small (point-like) or a larger
loading area. This observation leads to a further
important simplification of the FE-model: to describe
the tensile stress field properly, it is sufficient to model
the loading with point loads: the complicated non-linear
modelling of the loading area with contact elements is
not necessary. Therefore, the following calculations are
made with the simpler point-loading model. It should be

mentioned that this is in conflict with the analytical
approximations reported in Section 2, where the contact
radius has a significant influence on the tensile stress
field. In fact the contact radius has been used to cali-
brate the results: The approximation of Shetty et al.15

for the stress field has a fair coincidence with the FE-
results of this work but the contact radius is over-
estimated for several times (see Fig. 4). In the case of the
approximation of Godfrey10 and Godfrey and John6 the
contact radius fairly corresponds to our FE-results but
the tensile stress field does not.
It should be noticed that these results are not restric-
ted to the standard model described in Fig. 3. They are
valid for a wide range of disc and support geometries. It
can be expected that the approximations will fail for too
thin and too thick discs. Therefore the validity of the
assumptions were checked for disc thickness to disc
radius ratios in the range of 0.05< t/R<0.6, which
seems to be appropriate for most cases of practical
relevance. The overhang of the disc over the support has
no influence on the validity of the suggested approx-
imations.

3.2. The maximum tensile stress amplitude in the disc

In the centre of the bottom (tensile) plane of the disc
exists a biaxial stress state, the amplitudes of the radial
and tangential stress components are described by the
factor f [Eq. (11)]. Following the ideas of the last chap-
ter, there are only three remaining parameters, which
influence this factor: the geometric parameters t/R and
Ra/R and the Poisson’s ratio of the disc material, �. A
large number of FE calculations were done to achieve a
field of parameters that cover most of the most common

Fig. 6. Tensile stress distribution in the bottom plane of the disc along

the 0�- and the 60�-directions for two values of Young’s modulus of

the disc’s material in dimensionless variables. The other parameters

are equal to those in Fig. 2. The stress results for the case for E=100

GPa, as shown in Fig. 3a and b in detail, is also shown for a point

loading, which is drawn as solid (0�) and dashed line (60�). The cor-

responding results coincide in the considered range within a deviation

less than 1%.

Fig. 5. Maximum tensile stress component (at r=0) normalized with

F/t2 versus the applied load. Data for several different combinations of

ball and disc materials (E and Eb) are shown. The other used para-

meters are equal to the parameters used in Fig. 2.
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testing geometries and Poisson’s ratios. The investigated
range of parameters is listed in Table 3. The dependence
of the factor f on these three parameters is shown in
Fig. 7.
It can be recognised, that an overhang of the disc over
the support stiffens the specimen and reduces the max-
imum tensile stress. For the same reason the maximum
tensile stresses are higher for thin slices than for thick discs.
To be able to evaluate tests using the factor f, an analy-
tical equation is useful. A non-linear fit of the calculated
data points according to expression (12) was performed
using MATHEMATICA Version 4.1. The seven con-
stants ci (i=0,. . .6) were calculated for three specific Pois-
son’s ratios 0.2, 0.25 and 0.3 and are listed in Table 4.

f
t

R
;
Ra

R
; �

� �
¼ c0

þ

c1 þ c2
t

R
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t

R

� 2
þc4
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Ra

R
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These equations fit the maximum tensile stresses with
an error of less than 0.5% for the whole evaluated range
of parameters. For Poisson ratios � between 0.20 and 0.25
or between 0.25 and 0.3, respectively, f can be linearly
interpolated between corresponding values fð�1Þ and
fð�2Þ according to
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Using this result the maximum tensile stress in the disc
can be calculated for the most common disc and sup-
port geometries.
A comparison of the analytical solutions discussed in
Section 2 with the results of the FE-calculations of this
work shows, that the approximations of Shetty et al.15

and Westergaard14 describe the maximum tensile stress
component in the disc fairly well. For not too thin discs
(t/R>0.05) their results deviate from the FE-solutions
less than 2%, but for thinner discs the deviations may
be much higher. The other approximations are less pre-
cise. In the case of the approximation of Godfrey10 and
Godfrey and John6 the deviations from the FE-solu-
tions can exceed 100%.
The model can fail for two reasons:

1. if the specimen is too thick or the radius of the
loading ball is to small the fracture could be
induced by Hertzian contact stresses and

2. if the specimen is too thin and its elastic modulus
is too low buckling may occur.

Both failure modes are not likely to occur in the range
of parameters investigated (Table 3).

4. Experimental investigations

To gain some experimental evidence on the applic-
ability of the ball on three balls test fracture experiments
were performed. The locations of the fracture origin were
recorded to proof whether the fracture origin occurs in the
theoretical predicted area of maximum stress (i.e. in the
centre of the tensile loaded surface of the disc). Strength
data of discs were compared with those on bent beams.
The fracture tests were performed on a commercial
alumina quality (AL23 by Friatec GmbH, BRD). The
material was provided as uniaxially pressed discs. Their
diameter varied from 20.20 to 20.24 mm and their

Table 3

Evaluated range of independent parameters for the factor f

Parameter Evaluated range

Ra/R 0.55–0.9

t/R 0.05–0.6

�d 0.20–0.3

Fig. 7. Factor f (maximum tensile stress amplitude in the disc nor-

malised with the stress F/t2) versus the ratio of Ra/R. The curves refer

to different ratios of thickness to disc radius t/R. Full lines: �d=0.3,
dashed lines: �=0.25, dotted lines: �=0.2.

Table 4

Calculated values for the constants ci used in Eq. (12) for three differ-

ent Poisson’s ratios

�=0.2 �=0.25 �=0.3

c0 �12.354 �14.671 �17.346

c1 15.549 17.988 20.774

c2 489.2 567.22 622.62

c3 �78.707 �80.945 �76.879

c4 52.216 53.486 50.383

c5 36.554 36.01 33.736

c6 0.082 0.0709 0.0613
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thickness from 2.96 to 3.00 mm. For the values of the
elastic constants the manufacturer’s data sheet states
E=380 GPa and �=0.22 respectively.
The tests were performed on ‘‘as sintered’’ and on
‘‘machined’’ discs. In the latter case, the finishing steps
followed the suggestions given in DIN 51 11018 (i.e. a
grinding finish with diamond grit D15 on the prospective
tensile surface). The bending bars were machined from the
supplied discs to a size of 15
2
1.5 mm3. Again speci-
mens with an ‘‘as sintered’’ and a finished surface
according to DIN 51 110 were produced.
For the ball on three balls-tests a special fixture has been
designed. Special care was taken, that the specimen, the
supporting and the loading balls can be exactly centred.
Bearing balls made from a hardened steel were used for
the supporting balls. Their elastic constants are Eb=210
GPa and �b=0.3. The diameter of the balls is Rb=7.535
mm. The fixture in the experimental procedure are
described in more detail in.19 For the reported tests the
ratio describing the overhang of the discs over the support
is Ra/Rffi 0.87 and the ratio describing the shape of the
discs is t/Rffi 0.3. A crosshead speed of 1 mm/min lead
to fracture after 10–15 s.
The bars were broken using fixtures with an outer
support span of 13 mm and an inner support span of
4.33 mm on a Zwick universal testing machine.20 A
crosshead speed of 0.75 mm/min was applied to achieve
failure within 10–15 s.
In all fractured discs, the fracture initiated in the tensile
surface plane underneath the loading ball. Failure with

a threefold symmetry dominates, but in a few cases the
disc breaks into two or four pieces (Fig. 8). Tentatively it
was found the number of fracture pieces increases with
strength (stored elastic energy). In all investigated cases
the fracture origin was at or very near to the tensile sur-
face (Fig. 9a and b) and looked similar in disc as well as
in bending specimen. A magnification of the fracture
origin showed no significant defects which indicates that
weak boundaries (in the case of as sintered surfaces) or
machining defects (in the case of grinded surfaces) were
the initiations sites for fracture. In no case the fracture
started from the area around the loading ball, were also
tensile stresses occur. These observations give a clear
evidence that the concept of the ball on three balls
loading geometry is appropriate.
Following the procedure described in ENV 843-522

the characteristic strength �0 and the Weibull modulus m
as well as the limits of their 95%-confidence intervals
(according to21) were determined for each set of data.
Variations in specimen geometry were taken into account
for the evaluation of the fracture stress. Any sample con-
sisted of 30 specimens. These results are listed in Table 5.
A first glance at the data shows that the surface finish
has some influence on the strength. This fact fits to the
observation that always fracture originates at or very
near the surface. The Weibull modulus, which describes
the relative frequency of flaws sizes, is (almost) equal for
samples containing specimens with the same kind of
surface finish, but it is different for samples containing
specimens of different surface finish.
To compare the characteristic strength values of dif-
ferent sets of data probabilistic fracture mechanics has
to be applied. Two effects have influence on the char-
acteristic strength: Multi axial stress states are more
searching for defects then uniaxial stress states and large
specimens are more prone to contain dangerous defects
than small specimens. The first effect is accounted by a
fracture criterion for multi axial loading and the second
effect is taken into account by the Weibull extrapolation
of strength, which predicts lower strength values for
larger specimens. Two variants of the Weibull theory

Fig. 8. Fracture patterns of Al2O3 discs tested in the ball on three

balls test assembly. The circles show the area of the fracture origin.

Fig. 9. (a) and (b) Typical fracture origins on the ball on three balls tested discs. The fracture origin is indicated but no flaws in the microstructure

can be identified.
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are often used accounting for volume and the surface
flaws respectively. The relevant information on the
proper definition of the equivalent stress and on the size
effect can be found in standard textbooks on probabilistic
fracture mechanics.23,24 More information on the influ-
ence of multi axial stresses can be found in25,26,28,29 and
on the size effect of strength in.21,30,31

In the following the characteristic strength data gained
on discs are used to predict the characteristic strength of
the beams. To account for the multi axial loading an
equivalent stress, �eq, an often used multiaxial failure cri-
terion—the principle of independent action25,26,27—is
applied. This stress corresponds to the fracture stress in
an uniaxialy loaded specimen of same (effective) size.
For more details see.25 Then the Weibull theory is used
to extrapolate this stress from specimens of the (effec-
tive) size of the discs to that of the beams. This can be
done for specimens containing volume or surface flaws
giving the strength values �eq,V and �eq,S respectively.
For the calculation, the ratio of the effective volumes22

(or the effective surfaces) of the discs and the beams has
to be known. This ratio has been calculated to be 0.75 for
the specimens with the ‘‘as sintered’’ surface and to be
0.52 for the specimens with the ground surface (the ratio
of effective surfaces is 0.19 and 0.13 for both surface
conditions respectively). The data extrapolation and the
calculation of effective volume and surface will be
described in more details in a subsequent paper.19 The
calculated stresses are also plotted in Table 5.
Using the volume flaw model the predicted char-
acteristic strength is 357 MPa for the as sintered surface
state. The measured value is 338 MPa. In the case of the
grinded specimens, the values are 386 and 365 MPa
respectively. The strength of the bending bars is predicted
with a scatter of less than 5%, which seems to be fair, if
possible experimental errors19 are taken into account.
Using the surface flaw model the extrapolated strength is
334 MPa compared to the measured value of 338 MPa
for the specimens with an as sintered surface and 371
MPa compared to 365 MPa for the specimens with the
grinded surface. In this case, the 95% confidence intervals

overlap indicating that the underlying models are correct.
This fact is also supported by fractographic evidence.
To summarise no experimental evidence could be
found that the proposed fracture test and the theoretical
evaluation of the data are not appropriate.

5. Summary and concluding remarks

The ball on three balls testing geometry for biaxial
strength testing of brittle materials has some advantages
compared to other testing assemblies, especially it is not
sensitive for an out of flatness of the specimen. This fact
makes it possible to test ceramic discs in the as sintered
surface state. The most important disadvantage of the
ball on three balls testing geometry is, that the stress
state has a threefold symmetry and that it may depend
on a large number of geometrical and material para-
meters making analytical approximation difficult. The
FE-analysis performed in this paper shows, that—in the
parameter range investigated (which covers the most
important combinations of parameters for strength
testing of discs made from hard and brittle materials)—
some very important simplifications are possible. It
could be shown, that the stress field in the disc;

. does not depend on the elastic constants of the
supporting balls and the loading ball,

. it does not depend on the Young’s modulus of the
tested material (but it depends on its Poisson’s
ratio) and

. the amplitude of the stress field scales with the
applied load.

These results suggest, that—in the parameter range
investigated—the stress field in the disc does not depend
on the nonlinear changes in the loading geometry,
which are primarily caused by the deformation of the
balls. Indeed, it could also be shown, that the loading
situation (ball loading) can be approximated by a simple
point loading mode with a high degree of accuracy.

Table 5

Results of the strength measurements with 4-point bending and ball on three balls testa

Test method �0 (MPa) m �0,eq (MPa) �0,eq,V (MPa) �0,eq,S (MPa)

‘‘As sintered’’ surface 4-Point bending test 338 15 338 338 338

330/346 11/18 330/346 330/346 330/346

Ball on three balls test 348 17 363 357 334

343/354 14/21 358/370 352/363 329/340

Ground surface 4-Point bending test 365 21.0 365 365 365

359/371 16/26 359/371 359/371 359/371

Ball on three balls test 385 21 398 386 371

380/390 16/26 393/403 381/391 366/376

a Listed are the values for �0 and m and the limits of the corresponding 95% confidence interval. Also listed are the equivalent stress, �0,eq, which

accounts for the multiaxiality of the stress state and the Weibull extrapolated strength values, �0,eq,V and �0,eq,S, which respectively account for the
different volume and surface of the disc specimens and bending specimens.
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This approximation makes the necessary FE-model
much simpler and the numerical calculations much faster.
The maximum tensile stress component, �max, occurs
in the centre of the surface plane of the disc underneath
the loading ball, where the stress state is purely biaxial.
In the region around this maximum (which is significant
for the strength of the disc) the stress state scales with
the maximum tensile stress component.
Tensile stresses (Hertzian stresses) also occur around
the loading areas caused by the loading and supporting
balls. They will be higher the smaller the radius of the
balls. This may limit the minimum size of the balls.
Fractography has to be used to identify whether frac-
ture is initiated by the accounted stresses in the centre of
the disc surface and not by the Herzian stresses around
the loading ball. In the 60 fracture experiments per-
formed on a commercial aluminia ceramic, fracture
always started at the expected area.
The maximum tensile stress component, �max, is

. proportional to the applied force, F, and it is

. indirectly proportional to the square of the disc
thickness, t: �max=f.

F
t2
.

The factor f still depends on the loading geometry, the
specimen geometry and the Poisson’s ratio of the tested
material. The first situation is expressed by the ratio of
the support radius to the radius of the disc and the sec-
ond by the ratio of the disc thickness to the disc radius.
An analytical expression for the factor f is presented,
which has been fitted to the numerical results and which
describe them with an error of less than 1%.
Fracture experiments on discs and on bars were per-
formed on specimen made of an alumina ceramic with
two different surface states. A comparison of the results
of ball on three balls tests and bending tests needs the
conversion of strength data using probabilistic fracture
mechanics. Within the natural scatter of the strength of
the investigated material the strength of the different sets
of specimens was equal. This is an experimental indica-
tion, that the investigated method is fairly well situated
to describe the tensile strength of brittle materials.
In a consecutive paper19 details on a possible experi-
mental set up will be discussed. The possible experi-
mental scatter of this set up will also be discussed in
detail. The method of converting biaxial to uniaxial
data including the choice of a suitable multiaxial frac-
ture criterion and of a suitable size extrapolation of data
will also be tackled. In this context the effective volume
and the effective surface of the ball on tree balls tested
discs according to the Weibull theory will be calculated.
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April 1986, pp. 657–665.

7. ASTM F 394-78 (reapproved 1996), Standard test method for

biaxial flexure test (modulus of rupture) of ceramic substrates.

8. Kirstein, A. F. and Woolley, R. M., Symmetrical bending of thin

circular elastic plates on equally spaced point supports. J. Res.

Natl. Bur. Stand., Sect. C, 1967, 71, 1–10.

9. Byrne, W. P. and Morrell, R., Results of the UK Interlaboratory

Strength Test Exercise. NPL Report CMMT (A) 296, November

2000.

10. Godfrey, D. J., Fabrication, formulation, mechanical properties,

and oxidation of sintered Si3N4 ceramics using disc specimens.

Mater. Sci. Technol., 1985, 1, 510–515.

11. Bassali, W. A., The transverse flexure of thin elastic plates sup-

ported at several points. Proceedings of the Cambridge Philo-

sophic Society, 1957, 53, 728–743.

12. Vitman, F. F. and Pukh, V. P., A method for determining the

strength of sheet glass. Zavod. Lab., 1963, 29, 863–867.

13. Standard ISO 6474, Implants for Surgery—Ceramic Materials

Based on High Purity Alumina, 1994.

14. Westergaard, H. M., Stresses in concrete pavements computed by

theoretical analysis. Public Roads, 1926, 7, 25–35.

15. Shetty, D. K., Rosenfield, A. R., McGuire, P., Bansal, G. K. and

Duckworth, W. H., Biaxial flexure test for ceramics. Ceramic

Bulletin, 1980, 59, 1193–1997.

16. Timoshenko, S. P. and Woinowsky-Krieger, S., Theory of Plates

and Shells, 2nd edn. McGraw-Hill International Editions, New

York, 1959.

17. Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, 3rd

edn. McGraw-HillBook Company, 1970.
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